Cхема высоковольтного преобразователя напряжения



Всем привет. Целью этого проекта было создание генератора высокого напряжения, а по совместительству индукционного нагревателя значительной мощности, причём использоваться должна была очень простая схема и легкодоступные компоненты. Многие новички ищут способ эффективного увеличения мощности обычных двухтранзисторных ZVS и эта публикация в этом поможет.

Инвертор от Mazzilli, известный как «ZVS», пользуется популярностью среди любителей HV благодаря своей простоте и эффективности. Схема, которую здесь представляем, — ее модификация, чтобы передавать больше мощности.

Что касается теоретического описания работы инвертора, ему уже посвятили в интернете довольно много статей, которые всесторонне объясняют как теорию, так и практику.

Схема принципиальная ZVS преобразователя

Схема высоковольтного преобразователя на импульсных трансформаторах

Как видите, для удобства всё было разделено на два модуля. Такой подход позволяет легко подключать различные трансформаторы вместе с оптимально подобранными резонансными емкостями.

  1. Первый модуль — это драйвер с источником питания. Он имеет правильную электронику инвертора, а также встроенный выпрямитель и фильтр, который позволяет напрямую подключать устройство к сетевому трансформатору. Здесь использованы транзисторы IRFP260 и массивные дроссели с высоким током насыщения, что гарантирует надежную работу инвертора даже с высокой мощностью. Большой электролитический конденсатор видимый на фото, используется для фильтрации источника питания, он на 10000 мкФ 250 В. Это кажется нелогичным, но выбрали его из-за очень низких ЭПС и больших номинальных токов, что весьма важно в таких системах.
  2. Второй модуль состоит из двух параллельно подключенных строчников с резонансной батареей конденсаторов. Обе обмотки имеют по 8 витков, а резонансная батарея состоит из нескольких конденсаторов общей емкостью около 2,4 мкФ. Это позволило уменьшить импеданс резонансной цепи за счет увеличения количества мощности до уровня, на котором основным ограничением была текущая эффективность подачи всего сетевого трансформатора. Оба трансформатора (ТВС) практически идентичны, что очень важно — требуется даже распределение нагрузки, иначе инвертор может выйти из нормальной генерации, что приводит к сжиганию транзисторов.

Обмотка образована скручиванием 16 эмалевых проводов 0.4 мм, а затем обертыванием всего изоляционной лентой для механической защиты. Это значительно уменьшает скин-эффект и связанные с ним потери — ранее использовались обмотки, выполненные из обычных толстых проводов, под нагрузкой они нагреваются до температуры, при которой изоляция начала дымить. Эти же лишь немного теплые, даже после долгой работы схемы.

Испытания преобразователя в действии

Инвертор способен выдерживать 10 минут непрерывной работы, после чего трансформаторы начинают требовать охлаждения. Транзисторы не нагреваются слишком сильно — радиаторы остаются почти холодными. Большая часть тепла выделяется на выпрямителе моста, который может неплохо нагреваться — на нем тоже большой радиатор.

Полезное:  Домашний усилитель звука на микросхемах TDA7294 и TDA8425

Инвертор способен выдавать большие разряды благодаря значительной эффективности тока. Максимальная длина растянутой молнии составляет чуть более 20 см.

Также покажем сигналы осциллограмм: Первый это синусоида на LC-схеме без зажженной дуги. Последний скриншот показывает последовательность импульсов на одном из полевых ключей.

Индукционный нагреватель железа

Эта схема, как и любой такой резонансный преобразователь, может использоваться как небольшой индукционный нагреватель металлов. Чтобы сделать это, просто соберите индуктор в виде небольшой катушки, соединенный параллельно с резонансной батареей конденсаторов емкостью 2-4 мкФ. Вот как выглядит нагрев металла:

О транзисторах для генератора

IRFP260 — типичный выбор для этого типа инвертора. Данная схема питается от 27 В переменного тока, что означает около 36 В постоянного тока после выпрямления и фильтрации. Их применение гарантирует стабильную работу до 50 В постоянного тока, вы конечно можете повышать вольтаж еще дальше, но это рискованно.

Что касается транзисторов IRF740, они подходят только для меньших мощностей из-за небольших Id и больших Rds, что подразумевает меньшую силу тока и намного более высокие потери. IRFP260 имеет значительно меньшие Rds и большую предельную мощность рассеивания тепла, поэтому он обеспечивает большую текущую долговечность и меньшие потери проводимости. Их можно купить в большинстве интернет-магазинов или на Али по 6$ за 10 шт. Можно использовать и IRP240, но вы сможете прокачать через него гораздо меньшие токи.

Использование транзисторов под более высокое напряжение не является особенно целесообразным, так как они имеют более высокие Rds (сопротивление перехода), что приводит к увеличению потерь и в районе 60 … 70 В постоянного тока транзисторная управляющая связь не срабатывает, вызывая уничтожение транзисторов пробоем. Поэтому предлагаем остаться на более низких напряжениях питания — до 50 В постоянного тока. Вместо дальнейшего увеличения напряжения лучше уменьшить импеданс резонансного контура, чтобы инвертор мог потреблять больше энергии без увеличения напряжения.

Удалось запустить преобразователь используя источник питания 12 В / 200 Вт — разряды были эффективными, но не настолько впечатляющие. Искра была около 10 см, толстая и пушистая.

В целом питание обеспечивается группой трансформаторов, выдающих 27 В переменного тока. Потребление тока на максимальной растянутой высоковольтной дуге достигает 30 А.




2- 5,00
Загрузка...

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ