Ионисторы на замену аккумуляторным батареям


При проектировании электронной схемы с внутренним источником питания стоит задуматься о том, будет ли это классический аккумулятор или современный ионистор (другое название — суперконденсатор).

Движущей силой развития современной электроники являются источники энергии, без которых было бы невозможно эффективно миниатюризировать мобильные устройства, компьютеры или всевозможные носимые гаджеты. На первом этапе этой революции классические одноразовые батареи были заменены гораздо более удобными и экономичными АКБ. Но сейчас можно отметить другую тенденцию — суперконденсаторы — восходящая звезда в мире источников питания. Хотя вряд ли эти элементы вытеснят с рынка обычные электрохимические батареи в ближайшие несколько лет, их доля в отрасли с каждым годом будет значительнее.

Ионисторы на замену аккумуляторным батареям

Аккумуляторы — краткий обзор технологии

Сейчас на рынке электронных компонентов можно найти широкий ассортимент аккумуляторов, различающихся как технологией изготовления, так и размерами, способом монтажа, емкостью, напряжением, выходом по току или сопротивлению, условиям рабочей среды. Часто выбор источника питания для конкретного применения определяется не только основными техническими параметрами, но и соответствующими сертификатами безопасности, которые определяют использование батареи в данном устройстве — медицинские устройства будут здесь прекрасным примером. Далее сводка наиболее важной информации о типах аккумуляторов, которые в настоящее время используются в различных областях электроники.

Аккумуляторы NiCd (никель-кадмиевые) — одно из старых поколений аккумуляторов, обычно встречающиеся в виде ячеек R6 (AA) или R03 (AAA). В настоящее время использование этих батарей прекращается из-за токсичности кадмия и проблем с утилизацией.

NiMH аккумуляторы (никель-металлогидридные) — более эффективны, чем NiCd, и по-прежнему пользуются особой популярностью в сегменте небольших аккумуляторов типоразмеров (R03, R6, R14, R20, а также 6F22). В связи с популяризацией никель-металлгидридных элементов и корпусов и падением цен это решение, оно заменило никель-кадмиевые батареи. Хорошим примером выступают эффективные АКБ Eneloop, часто используемые в профессиональных устройствах (например при питании фотовспышек, требующих высокой емкости и эффективности по току, а также устойчивости к большим колебаниям окружающей температуры). NiMH аккумуляторы также доступны в миниатюрных версиях, а также различных типов корпусов (часто предназначенные для монтажа непосредственно на печатной плате). Во многих коммерческих устройствах можно найти использование небольших перезаряжаемых батарей этого типа в качестве источника питания для поддержания энергозависимой памяти и / или работы часов реального времени (RTC). Это решение имеет преимущество перед использованием литиевыъх батарей (например CR2032), поскольку оно устраняет необходимость периодической замены батареи каждые несколько лет работы устройства.

Аккумуляторы Li-Ion (литий-ионные) — наиболее распространенный сегодня тип аккумуляторов, особенно в мобильных устройствах, ноутбуках, радиоуправляемых моделях, квадрокоптерах, медицинских устройствах, фонариках и многом другом. Батареи этого типа отличаются большой емкостью, высоким выходом по току и высокой плотностью энергии, а также позволяют достаточно быстро перезаряжаться. В отличие от щелочных батарей, литий-ионные источники электроэнергии требуют строго контролируемых рабочих параметров, в частности процесса зарядки — хорошо известны самовоспламенение и взрывы литий-ионных аккумуляторов в результате производственных дефектов или неисправности зарядных устройств.

Аккумуляторы Li-Po (литий-полимерные) — также часто используемые в бытовой электронике (например, в планшетах или фитнес браслетах) и в авиамоделировании. Они более безопасные (хотя и требуют использования как встроенных, так и внешних устройств защиты) и легче, чем литий-ионные батареи, обеспечивают возможность очень быстрой зарядки и бывают разных размеров.

Аккумуляторы LiFePO4 (литий-железо-фосфатные) — еще одна подгруппа аккумуляторов с химической структурой на основе лития, набирающая все большую популярность в требовательных схемах электропитания электромобилей, электроинструментов и накопителей энергии. LiFePO4 обладает довольно высокой плотностью энергии (следовательно емкостью), высокой устойчивостью к суровым условиям эксплуатации (включая глубокий разряд) и длительным сроком службы. При этом у них нет эффекта памяти.

Необслуживаемые батареи — в эту группу входят свинцово-кислотные батареи нового поколения, в которых жидкий электролит (ранее требовавший периодического, ручного пополнения и контроля уровня) был заменен электролитом в виде геля (гелевые батареи) или закрываются в специальных отсеках из стекломата (аккумуляторы AGM). Продукты из этой группы обладают высокой емкостью, но при этом удельная энергия довольно низкая. Даже самые маленькие необслуживаемые батареи во много раз тяжелее, чем литий-ионные или никель-металлгидридные АКБ, аналогичные по емкости и напряжению. Преимуществом AGM и гелевых аккумуляторов является их невысокая цена, возможность работы в любом положении (без риска утечки электролита за пределы аккумуляторного отсека) и простота взаимодействия со схемами бесперебойного питания.

Ионисторы на замену аккумуляторным батареям

Конструкция и использование ионисторов

Суперконденсаторы по устройству и принципу работы отличаются от классических электролитических конденсаторов, хотя кажутся на них похожими. Основное отличие состоит в том, что суперконденсаторы имеют более сложную форму — их название, электрический двухслойный конденсатор (EDLC), указывает на двухслойную структуру. Облицовка конденсатора отделена от электролита «собственными» диэлектрическими слоями, что делает заменяющую модель такого конденсатора включающей в себя два последовательно соединенных конденсатора. Между облицовками имеется дополнительный слой ионопроницаемого сепаратора, предназначенный для предотвращения случайного замыкания электродов.

Ионисторы на замену аккумуляторным батареям
Схема суперконденсатора EDLC

Конструктивно похожие на EDLC конденсаторы представляют собой так называемые гибридные конденсаторы, в которых накопление электрического заряда происходит с помощью двух механизмов. Первый из них — типичный для конденсаторов, то есть за счет накопления электростатической энергии. Второй механизм основан на электрохимических явлениях, которые заставляют суперконденсатор вести себя как обычная батарея. Такой гибридный принцип работы делает характеристики заряда и разряда немного более сложными, чем у классических конденсаторов, но поведение суперконденсаторов в реальных схемах будет определяться в основном электростатической составляющей. Это означает почти линейное падение напряжения в зависимости от степени заряда, что является большой трудностью для разработчиков.

Ионисторы и АКБ — сравнение параметров

Принимая решение о выборе суперконденсатора или аккумулятора для проектируемого устройства, надо учитывать ряд ключевых технических параметров.

Скорость зарядки — несомненным преимуществом суперконденсаторов является очень короткое время зарядки, зависящее от емкости и установленного ограничения тока — в случае меньшей емкости обычно не возникает проблем с получением времени зарядки от долей секунды до несколько секунд. Такие диапазоны недостижимы для любых батарей, имеющихся на рынке, в случае которых даже частичная подзарядка требует как минимум нескольких минут.

Плотность энергии — этот параметр, выражаемый в единицах энергии на килограмм массы данного источника (обычно [Втч / кг]) для суперконденсаторов во много раз ниже, чем для любого типа аккумулятора. То есть для накопления того же количества энергии, что и в батарее (например, в литий-ионной), потребуется использование гораздо большего по размерам и более тяжелого суперконденсатора.

Плотность мощности — параметр, выражаемый в единицах мощности на килограмм массы источника [Вт / кг], намного выше для суперконденсаторов, чем для обычных электрохимических батарей. Высокое значение плотности мощности означает, что даже небольшой суперконденсатор способен подавать относительно высокий ток на потребитель — это связано с очень низким сопротивлением ESR. Сравнение различных типов источников тока в плане энергии и удельной мощности показано на рисунке.


Ионисторы на замену аккумуляторным батареям
Сравнение различных типов источников энергии на плоскости энергии и плотности мощности

Срок службы — суперконденсаторы имеют гораздо более длительный срок службы, чем обычные электролитические конденсаторы — и хотя они также подвергаются неизбежным процессам старения, количество циклов заряда в течение гарантированного срока службы практически неограничено (особенно в небольших моделях EDLC, предназначенных для монтажа на печатной плате). Эти особенности делают суперконденсаторы идеальным выбором там, где частая перезарядка происходит во время нормального рабочего цикла.

Номинальное напряжение — самым большим недостатком суперконденсаторов является низкое рабочее напряжение — в большинстве случаев оно не превышает значения 2,8 — 5,5 В. Это ограничение связано с внутренней структурой — материала и электролита. Если в случае аккумуляторов последовательное соединение отдельных ячеек в блоки является классическим методом увеличения выходного напряжения, то в суперконденсаторах это связано с резким уменьшением эквивалентной емкости, более того — часто требует использования выравнивания напряжений, чтобы предотвратить повреждение одного из них из-за слишком большой разницы в емкостях (что неизбежно при довольно большом производственном допуске).

Диапазон рабочих температур — некоторые суперконденсаторы адаптированы для работы в широком диапазоне температур окружающей среды. В то время как большинство аккумуляторных батарей имеют значительно заниженную эффективную емкость при низких температурах, суперконденсаторы могут работать даже в морозах до -40 ° C. Большинство ионисторов также хорошо справляются с повышенными температурами окружающей среды, вплоть до +85 ° C.

Цена — современные суперконденсаторы по-прежнему относительно дороги в производстве, а это означает что использование перезаряжаемых или одноразовых батарей может оказаться экономической необходимостью. Стоимость резко возрастает, особенно на миниатюрные конденсаторы для сборки SMD с очень большой емкостью.

Ионисторы на замену аккумуляторным батареям
Типичная разрядная характеристика суперконденсатора

Характеристики разряда — одним из наиболее важных различий между батареями и конденсаторами является форма их характеристик разряда по напряжению. В случае батарей напряжение медленно падает в течение длительного периода времени до тех пор, пока не будет достигнут определенный критический диапазон, выше которого происходит резкое падение, ведущее к глубокой разрядке — если устройство не отключится раньше. Примеры характерных форм для популярных типов батарей показаны на рисунке. Для суперконденсаторов характеристика разряда изначально нелинейная, потому что падение напряжения на сопротивлении ESR, которое изменяется со временем, накладывается на постепенное изменение напряжения, что вызвано уменьшением количества электрического заряда, накопленного в конденсаторе.

Ионисторы на замену аккумуляторным батареям
Примеры форм разрядных характеристик для популярных типов аккумуляторов

Суперконденсаторы вместо батареек

Принято считать, что ионисторы являются быстрой и эффективной заменой батарей и аккумуляторов практически в любом устройстве. Но стоит помнить, что из-за всех отличий, а также значительных ограничений этой технологии — прямая замена одного типа источника энергии на другой возможна только при определенных условиях и в строго определенных ситуациях. Ионисторы это не малогабаритные электронные устройства, а целые схемы большой мощности. Хотя в последнее время все чаще слышно о питании даже электромобилей с помощью суперконденсаторов.

Действительно, такое решение кажется очень привлекательным с точки зрения полезности — высокая удельная мощность может успешно использоваться во время разгона, значительно улучшая динамику движения. Замечательная скорость зарядки дарит надежду на то, что электромобиль будущего сможет заряжаться немного дольше, чем просто заправка обычного авто.

Другой пример — накопители энергии, используемые в современных распределенных системах электроэнергии. Подключение потребителей к электросети (которые помимо использования энергии могут и продавать излишки обратно в сеть), а также увеличение количества возобновляемых источников энергии означает, что иногда возникает необходимость хранить неиспользованную энергию низкой нагрузки на сеть. Это решение позволяет использовать его в периоды повышенного спроса, связанного с суточным циклом (например при работе предприятий). С другой стороны, использование накопителей энергии имеет решающее значение из-за включения в сеть энергоемких зарядных станций для электромобилей — обычная электросеть не сможет справиться с импульсным увеличением тока.

Полезное:  Выпрямитель для заряда аккумуляторных батарей 6/12 В

Схемы питания на основе суперконденсаторов

В некоторых схемах ценным преимуществом является возможность поддерживать питание процессора и ключевых компонентов, например, после сбоя электросети, чтобы должным образом завершить работу операционной системы, сохранить наиболее важные данные в памяти или восстановить информацию из энергозависимой памяти после того, как питание вернется в норму.

Не всегда необходимо и выгодно запитывать все устройство — обычно достаточно подать напряжение на процессор на короткий период времени вместе с любыми внешними запоминающими устройствами, необходимыми для завершения процедуры управляемого выключения. Из инженерной практики известно, что данные операционной системы хранятся на картах microSD миникомпьютеров (например Raspberry Pi), и повреждаются при внезапном отключении питания в неудачный момент.

В некоторых случаях можно эффективно использовать энергию запасенную в классических электролитических конденсаторах, фильтрующих источник питания. Но если для выполнения процедуры требуется большее количество энергии — стоит обратиться к суперконденсатору, работающему в режиме буферного питания.

Ионисторы на замену аккумуляторным батареям
Принцип работы системы резервного питания с использованием суперконденсаторов

Принцип работы системы резервного питания с использованием суперконденсаторов показан на рисунке выше. После отключения основного блока питания, последовательно включенные суперконденсаторы отправляют энергию на потребитель через преобразователь. Дополнительные резисторы — за счет снижения эффективности схемы из-за потерь энергии — уравновешивают напряжение, предотвращая поломку одного из конденсаторов.

Такая простая схема, хотя и хорошо известная из инженерной практики по применению свинцово-кислотных аккумуляторов, не будет работать в большинстве реальных проектных ситуаций — основная проблема будет заключаться в сильном импульсе тока, который появляется при зарядке суперконденсатора сразу после включение питания устройства. Поэтому должны быть предусмотрены соответствующие меры по исправлению положения.

Ионисторы на замену аккумуляторным батареям
Схема для устранения проблемы сильного импульса тока, возникающего при зарядке суперконденсатора

Одно из самых простых практических приложений для устранения этой проблемы показано на рисунке. Резистор R используется для ограничения зарядного тока.

Диод Шоттки защищает схему от обратных токов, благодаря чему зарядка конденсатора возможна только через резистор. Схема адаптирована для питания от источников постоянного напряжения с напряжением, превышающим как минимум на 0,3 В напряжение поддержки, необходимое для правильной работы процессора. Важным требованием является обеспечение высокого сопротивления источника после его выключения, иначе суперконденсатор будет разряжаться непосредственно на источник, что значительно сократит время поддержки.

Ионисторы на замену аккумуляторным батареям
Универсальное применение схемы резервного питания с использованием суперконденсаторов

Гораздо лучшим и более универсальным решением является схема питания, показанная на рисунке выше. Дополнительный диод Шоттки, подключенный последовательно с резистором R, предотвращает разряд ионистора от основного источника питания или других блоков устройства. Полевой транзистор позволяет программно выбрать источник напряжения — в состоянии проводимости он обеспечивает путь с низким сопротивлением, который соединяет выводы питания процессора с основным источником питания устройства, и отключение (после обнаружения падения напряжения) позволяет начать разрядку суперконденсатора после перевода микроконтроллера в режим пониженного энергопотребления (STOP).

Стоит обратить внимание на то, что большой ошибкой может быть попытка использовать суперконденсатор вместо никель-металлгидридной аккумуляторной батареи для поддержания часов RTC и памяти RAM. Это решение будет работать только в тех устройствах, которые во время нормальной работы постоянно или большую часть времени подключены к другому источнику питания (например часы с питанием от сети). Следует помнить, что суперконденсаторы характеризуются относительно высокими токами саморазряда, а значит время поддержки ионистором RTC или RAM памяти будет во много раз меньше, чем в случае даже небольшой литиевой батареи или никель-металлогидридного АКБ.

Резервный БП с напряжением выше 5 В

Схемы буферного питания, представленные на рисунках, оправданы для маломощных микроконтроллеров и других схем, способных работать при напряжении питания около 1,8 — 3,3 В. При необходимости получить более высокое напряжения (например USB 5 В), можно выбрать один из четырех вариантов:

  1. Использование суперконденсатора с более высоким допустимым рабочим напряжением — в то время как самые популярные суперконденсаторы предназначены для работы с напряжением до 5,5 В, на рынке представлены модели, состоящие из нескольких ячеек с рабочим напряжением от 1,4 В до 8,4 В в диапазоне суммарной ёмкости до 100 Фарад.
  2. Использование последовательных конденсаторов с одинаковой номинальной емкостью — в этом случае необходимо использовать пассивный делитель напряжения или активный балансир, защищающий конденсатор наименьшей реальной емкости от пробоя.
  3. Использование повышающего преобразователя DC / DC — это наиболее экономичное решение, поскольку позволяет максимально рекуперировать энергию, запасенную в суперконденсаторе.
  4. Применение встроенного контроллера заряда / разряда суперконденсатора — на рынке доступны специализированные контроллеры, позволяющие просто и эффективно управлять схемами питания на основе ионисторов.

Выбор преобразователя для ионистора

Давайте подумаем о соответствующем выборе DC / DC преобразователя, который будет работать с суперконденсаторами. Среди всех важных параметров, особое внимание следует уделить трем из них:

Ионисторы на замену аккумуляторным батареям
Принципиальная схема MCP1640, способной работать при входном напряжении в диапазоне от 0,65 В

Диапазон входного напряжения — предполагая, что целью использования преобразователя является восстановление как можно большего количества энергии хранящейся в суперконденсаторе (а не только для повышения напряжения на короткое время, например, для сохранения данных в энергонезависимой памяти), важен подбор схемы с максимально широким диапазоном напряжений с минимально возможным пусковым напряжением.

На рынке существует множество миниатюрных преобразователей, отвечающих этому требованию — в качестве примера приведем семейство Microchip MCP1640, способные работать при стартовом входном напряжении в диапазоне от 0,65 В. Базовая схема показана на рисунке. Еще одним заслуживающим внимания примером является схема LM2621 — при токе питания 80 мкА она может обеспечивать питание выходного устройства с током до 1 А, что позволяет использовать её в устройствах, требующих большей мощности (в этом случае понадобится суперконденсатор большой емкости или батарея нескольких меньших, соединенных параллельно).

КПД — высокий коэффициент преобразователя позволяет максимально полно использовать относительно небольшое количество энергии, хранящейся в суперконденсаторе. Но стоит иметь в виду, что во многих приложениях — в частности, в сегменте сверхнизкого энергопотребления — значение тока источника питания, потребляемого самим преобразователем, оказывается гораздо более важным, поскольку именно этот параметр становится основной потерь энергии, вносимых преобразователем для схемы с низким энергопотреблением. Например MCP1640 для правильной работы требуется ток всего 19 мкА, поэтому ее можно успешно использовать в маломощных устройствах.

Контроль (линия EN / SHDN) — стоит обратить внимание на возможность отключения инвертора при нормальной работе устройства, что снизит общее энергопотребление и позволит быстрее заряжать суперконденсатор после того как накопленный в нем заряд использован. В настоящее время подавляющее большинство интегрированных контроллеров DC / DC имеют линию включения. Энергосбережение особенно полезно в устройствах, основным источником питания которых являются батареи или аккумулятор — например, контроллер MCP1640 потребляет всего 1 мкА в выключенном состоянии.

Встроенные контроллеры ионисторов

Использование стандартного встроенного контроллера заряда / разряда — хороший выбор для более требовательных приложений с суперконденсаторами. В настоящее время на рынке появляется все больше продуктов этого типа — каждый из них предлагает несколько иной набор функций и параметров, что позволяет адаптировать силовые цепи к конкретным требованиям приложения.

Ионисторы на замену аккумуляторным батареям
Схема применения контроллера MAX38888, действующего как «реверсивный» преобразователь постоянного тока

Рассмотрим микросхему MAX38888. Это обратимый преобразователь постоянного тока в постоянный, позволяющий просто реализовать функции управления потоком энергии между суперконденсатором и основным источником питания (батареями или аккумулятором). Схема позволяет заряжать суперконденсатор током до 500 мА, а после потери основного источника питания (после извлечения аккумулятора) позволяет запитывать системную часть (шину питания основного устройства) током до 2,5 А. Схема включения контроллера MAX38888 показана на рисунке.

Ионисторы на замену аккумуляторным батареям
Схема применения микросхемы LTC4041 с двумя суперконденсаторами

Другой пример специализированного контроллера суперконденсатора — микросхема LTC4041. Встроенный активный балансировщик обеспечивает прямое подключение двух последовательных суперконденсаторов к контроллеру. Один и тот же блок понижающего / повышающего преобразователя постоянного тока может работать в двух направлениях, поддерживая как зарядку суперконденсатора, так и разряд на нагрузку.

В схемах требующих более высоких рабочих напряжений, можно использовать расширенный контроллер серии LTC3350. Система обеспечивает последовательное соединение до четырех суперконденсаторов, предлагает функцию активного балансира, двунаправленный понижающий / повышающий преобразователь и ряд уникальных функций, в том числе 14-битный преобразователь АЦП для контроля напряжений, токов, емкости и так далее. Он также оснащен активными ограничителями перенапряжения и двойным транзисторным контроллером с «идеальным диодом» для передачи энергии на суперконденсаторы и обратно без потерь.

Ионисторы на замену аккумуляторным батареям
Схема применения расширенного контроллера серии LTC3350, разработанного для систем, требующих высоких рабочих напряжений

ON Semiconductor подготовила интересное предложение для разработчиков, работающих над фотовспышками и другими приборами, требующими подачи сильных импульсов тока (до 4 А) на мощные светодиоды. CAT3224 — это специализированный контроллер ионистора, который также предлагает два высокопроизводительных встроенных источника тока и активный балансировщик для подключения двух суперконденсаторов.

Ионисторы на замену аккумуляторным батареям
Схема на базе микросхемы CAT3224, которая позволяет подавать сильные импульсы тока на мощные светодиоды

Представленное решение является еще одним примером отличного взаимодействия между батареями (в данном случае рекомендуются литий-ионные) и суперконденсаторами.

Взаимодействие суперконденсаторов с АКБ

Обсуждая тему суперконденсаторов и аккумуляторов, заметим еще один важный пример сотрудничества между обоими типами источников энергии. С помощью компаратора, ОУ и LDO стабилизатора, можно построить схему активного напряжения компенсации падения на внутреннее сопротивление основного источника питания (батареи) — пример такой схемы показан на рисунке далее.

Ионисторы на замену аккумуляторным батареям
Активная компенсация падения напряжения на внутреннем сопротивлении основного источника питания

Конденсаторы заряжаются от источника тока на базе усилителя MAX406, взаимодействующего с шунтирующим резистором R6 (в дифференциальном режиме) и выходным транзистором P1. Компаратор MAX985 постоянно проверяет напряжение на конденсаторах и шине питания устройства, при необходимости открывая транзистор P2, так что суперконденсаторы подключаются параллельно к батарее, поддерживая ее работу и предотвращая переходное падение напряжения при приложении большой нагрузки.

Ионисторы на замену аккумуляторным батареям
Канал 1 — напряжение аккумулятора, канал 2 — выходное напряжение, канал 3 — напряжение на плюсовом выводе «верхнего» суперконденсатора

Эффекты работы системы показаны на рисунке (канал 1 — напряжение аккумулятора, канал 2 — выходное напряжение, канал 3 — напряжение на плюсовом выводе «верхнего» суперконденсатора).

Подведение итогов и перспективы

В обычной электронике обычно встречаются электрохимические источники энергии: батареи и аккумуляторы. Но стоит помнить, что ионисторы хотя еще не готовы к полной замене обычных источников питания с технологической точки зрения — идеально подходят для их поддержки в устройствах, требующих поддержания питания после сбоя энергии от основного источника, или в качестве дополнительных аккумуляторов, используемых для компенсации падений напряжения нагрузки. Пройдёт ещё несколько лет и ситуацию серьёзно изменится, так как активные разработки ведутся многими фирмами.



   Форум по электронике и автосхемам

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ